Selamat Datang di blog sederhana saya,Semoga apa yang Kalian Inginkan dapat terpenuhi disini.

Contoh Perhitungan Voted Perceptron

      Menyambung tulisan saya sebelumnya tentang voted perceptron, kali ini saya akan memberi contoh perhitungan manual algoritma voted perceptron. algoritma terdiri dari dua tahap yaitu tahap pelatihan atau training dan tahap klasifikasi.

Proses Training

      Berikut ini adalah proses pelatihan untuk mencari nilai vektor perceptron v dan bobot c yang akan digunakan dalam proses klasifikasi. Pada proses pelatihan ini, parameter yang perlu di masukkan adalah vektor perceptron awal v_1 = {0, 0} , Treshold T = 1,k = 1,dan bobot c = 0. Di bawah adalah data logika AND yang akan di gunakan untuk data latih. 

Data yang pertama x = {1, 1} target = 1

kemudian di hitung dot product dari vektor input x dan vektor perceptron v

y_in = (x_1 *v_1)+(x_2 * v_1)
       = (1*0)+(1*0) = 0

dari y_in tersebut di masukkan ke dalam fungsi aktivasi dengan treshold T = 1

y = sign(y_in) = sign(0) = -1

karena target berbeda dengan  output,maka update vektor perceptron

v_2 = v_1 + (target * x)
      = 0 +(1*1) = 1
      = 0+(1*1) = 1

maka di dapat v_2 = {1, 1},update pula nilai c dan k

c_2 = 1
k = 2

sampai di sini kita mendapatkan nilai v = {(0, 0),(1, 1)} dan nilai c = {1,1} dan k - 2 dan kita lanjutkan dengan selanjutnya

 

Data yang kedua x = {1, -1} target = -1 

menghitung output 

y_in = (x_2 *v_2)+(x_2 * v_2)
       = (1*1)+(-1*1) = 0 
y = sign(0) = -1

karena output sama dengan target maka tidak dilakukan perhitungan vektor dan hanya menghitung nilai c

c_2 = c_2 +1
       = 1+1 = 2

sampai di sini kita mendapatkan nilai v = {(0, 0),(1, 1)} dan nilai c = {1,2} dan k - 2 dan kita lanjutkan dengan selanjutnya

 

Data yang ketiga x = {-1, 1} target = -1 

menghitung output 

y_in = (x_2 *v_2)+(x_2 * v_2)
       = (-1*1)+(1*1) = 0 
y = sign(0) = -1

karena output sama dengan target maka tidak dilakukan perhitungan vektor dan hanya menghitung nilai c

c_2 = c_2 +1
       = 2+1 =3

sampai di sini kita mendapatkan nilai v = {(0, 0),(1, 1)} dan nilai c = {1,3} dan k - 2 dan kita lanjutkan dengan selanjutnya

 

Data yang ke empat x = {-1, -1} target = -1 

menghitung output 

y_in = (x_2 *v_2)+(x_2 * v_2)
       = (-1*1)+(-1*1) =-2
y = sign(-2) = -1

karena output sama dengan target maka tidak dilakukan perhitungan vektor dan hanya menghitung nilai c

c_2 = c_2 +1
       = 3+1 =4

sampai di sini kita mendapatkan nilai v = {(0, 0),(1, 1)} dan nilai c = {1,4} dan k - 2 .
Apabila dalam satu iterasi masih ada data yang error,maka di lanjut ke iterasi berikutnya sampai di peroleh vektor yang selalu benar untuk semua data. Berikut adalah rangkuman dari perhitungan pelatihan voted perceptron.

dari pelatihan tersebut diperoleh nilai v = {(0, 0),(1, 1)},c = {1,8} dan k = 2 yang di gunakan dalam proses klasifikasi.

Proses Klasifikasi

       Dari nilai v,c, dan k dari proses pelatihan maka kita lakukan klasifikasi. Data yang akan kita uji adalah x = {1, 1}

a = (1*sign((0*1)+(0*1)))+(8*sign((1*1)+(1*1)))
a = -1 +8
a = 7
output = sign(7) = 1 

dan data dapat di klasifikasikan dengan tepat.

Sekian dulu tulisan ini. Bila masih ada waktu, lain kesempatan saya lanjutkan dengan contoh program sederhana dari algoritma voted perceptron. Sampai jumpa.

Apabila ada kesalahan dalam penulisan atau perhitungan monggo di ingatkan. Terima kasih.
Share:

0 comments:

Post a Comment

  • ()
  • ()
Show more

Halaman